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During the course of molecular evolution, the fitness of oy

nongenomic nucleobases such as iso-G and iso-C may have been

explored:® The iso-Giso-C base pair in particular may be

predicted to share several physical attributes with its isomeric

parent, GC, that could be advantageous in the context of abiotic 7.00°

reactions. For example, apart from the same hydrogen-bond donor/

acceptor groupsdipole momentsof iso-G and iso-C nucleobases

should be similar to those of G and C. Reflecting these factors,

the ab initio derived interaction energy of iso-G and iso-C in @ Figyre 1. Summary of the HartreeFock 6-31G** dipole moments and

Watson-Crick geometry compares to that of G and C, and is jnteraction energies. Thin arrows refer to dipole moments for individual

2—3-fold greater than that of (2-amino-)A and T (Figure 1). bases; thick arrows correspond to dipole moments for base pairs.
Incorporation of iso-Gso-C into an expanded genetic system |nteraction energies have been corrected for basis set superposition error.

has been constrained by iso-G infidelity, seen in its ability to aThis work.Reference 5b.

code for both T and iso-C. In vitro polymerase studigbpsomal

¢

L

translation’, andrecA-promoted DNA strand-exchantyexperi- 4

ments, all suffer from this phenomenon, which is consistently A AR
explained by the coexistence of NH and O2-H iso-G /N\Z\E<N—H—N\nc\
tautomer$;° and the formation of iso-@ - iso-C and iso- R “‘«O AN
Goz-ny'T Watsonr-Crick pairs (Figure 2). Crystallographic AW
observation of both WatserCrick and wobble iso-& geom- Watson-Crick

etries in a single double helix provides the most direct evidence
to date in support of a multiple tautomer mechanism for iso-G B.
infidelity.* In this structure, three water molecules are located

major groove

|
along the major and minor groove edges of the is@-&obble 2N “‘”“H\ y +HpO N E_H_o e
pair, but are absent from the iso-lGWatson-Crick pair, owing /N@N—H——é CoH ——— N’z\\)=< ?—\g
to the proximity of a Hoechst minor groove binding agent (Figure R N-&O ; M —_— v }JE{N"H_N}IN
e - - -H- -Hs0O R

2, panel B)\! These data suggest that aqueous conditions should \ \ N 2 o—H- & \R
favor the wobble over the WatseiCrick geometry of iso-GT, inor roove -0 \R
and thereby provide a suitable environment for replication of iso-G Watson-Crick
and iso-C. We describe below nonenzymatic, template-directed wobble
experiments consistent with this prediction. Figure 2. Iso-G base pairs relevent to the current study. Top, iso-G(N1

* To whom correspondence should be addressed. Telephone: (909) 787—H)'ISO'C. Watsorr(_:rlck base pair. Bottom, two iso-G:T b.ase-pf';ur
7266. Fax: (909) 787-4713. E-mail: switzer@citrus.ucr.edu. geometries according to a dodecamer duplex crystal structure: Robinson,
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Figure 4. Autoradiogram of 20% PAGE-analyzed template-directed - @
oligomerization reactions on templateafter 10 days. s o 9 ©
2 2¢ 32 2 2
terminus to facilitate oligomerization. Oligomerizations on hairpin %;1 § E 5 £ s
. = = = =
templates were performed in the presence of 200 mM gl g & & & @ a
M NacCl, 0.2 M lutidineHCI, pH 8, and 100 mM activated 8. . s 4 5 s
monomet® at 0 °C. After 10 days, template-directed reactions
were subjected to 20% PAGE analysis and visualized by .
autoradiography. - B
Results from template-directed oligomerization on isosGC -B - - - '
bearing templatel are given in Figure 4. Full-length product,

determinefj by comparison to the results from all natural templates Figure 5. Autoradiogram of 20% PAGE-analyzed template-directed
2 and3 (vide infra), was observed only in the presence of both jigomerization reactions on templatgpanel A) ands (panel B) after
activated iso-cytidylate and guanylate monomers as seen in lanejg gays.

4 versus lanes 2 and 3. Apart from indicating successful
incorporation of iso-C opposite template iso-G, these data also

support the fidelity of iso-C relative to C, and fidelity of G relative f this ki | . ith
to is0-G. Further, cooperative iso-cytidylate and guanylate residue Products of this kind were notably absent from experiments wit
stacking along the template prior to covalent bond formation is th€ iS0-G bearing template(Figure 4, lane 3), possibly because

implied by formation of disproportionate quantities of products I50-G avoids a syn conformation. Incubation of templamq
in lane 2 as+1-mer (iso-C alone) and lane 4 asn-+1-mers 3 with 2-Melmp-iso-C/G does not lead to any appreciable

(both iso-C and G present). A similar effect of downstream diffqrence i_n the_quantity of full length product as compared to
G-residues on the incorporation of upstream A, C, or U residues th€ incubation with 2-MelmpG alone (Figure 5, panels A and B,
has been noteH. lanes 6 versus 3). These results indicate the lack of a pronounced
To assess the fidelity of iso-G relative to the natural pyrimidines {€ndency for iso-C to misincorporate opposite A or G in a template
under nonenzymatic conditions, templatewas incubated in and be extended to longer products. However, lanes 5 and 6 of

separate experiments with 2-MelmpC and 2-MelmpU along with Fi.gl_”e 5, par_1e| A, ShOV.V that_iso-C can yie_Id single residue
2-MelmpG. As evident in lanes 5 and 6 of Figure 4, in neither misincorporations opposite G in a template in the absence of

case does full-length product form. The absence of full length competing_ C monomer. .
product in lane 6 is consistent with iso-G recognition of U viaa 1 he regiochemical preference for phosphodiester bond forma-

wobble rather than WatserCrick geometry. tion between the terminal ribo-G of the primer and thésb-
Template and3 are designed to address the fidelity of iso-C CMP reS|due_ incorporated into full-length product from tem_p_late
relative to the natural purine bases in the context of nonenzymatic1 was exar'nlned by RNase T1 cleavagg. RNase T1 sp'eC|f|ca|Iy
template reactions. As shown in Figure 5, template-directed C/€@ves 35-phosphodiester ribonucleoside bonds locatetb3
oligomerization of 2-MelmpC/G and 2-MelmpU/G on their aribo-G residuet?13The product resulting from digestion of the
respective natural templates g@anel A, lane 4) and AgXpanel ohgomgrlm}lqn produ.c.t from templgﬂes asingle faster moving
B, lane 4) occurs efficiently to afford full-length product in 10 Pand with similar mobility to the original template (see Supporting
days. Control experiments with pyrimidine monomer alone for a Informfemon). This result Is consistent W'th Is0-G directing the
given cognate purine template (lane 2, panels A and B) showed formation of 3,5-phosphodiester linkages in the product strand.
very little extension product. In contrast, control experiments In summary, in contrast to previous enzymatic experiments,
where templateg and3 were incubated with G monomer alone NONénzymatic conditions in an agueous environment promote
showed visible products arising from multiple incorporations faithful transcription of the iso-&@so-C base pair. This finding is

(Figure 5, lane 3, panel A (trace) and panel B). Misincorporations i?\ keeping With.iSkO'G recogn(ijtion of U(T) vial a wobblelrathler
at the first template position are consistent with an equilibrium than Watsor-Crick geometry due to structural water molecules

of synandanti conformers of the template A/G residues and/or !n the heli_cal grooves and suggests that limitations surrounding
the incoming G residue, and the formation of purine(syn) incorporation of the iso-&so-C pair into an expanded genetic

purine(anti) base pairs. The circumstances where the greatesBYStem may be avoided by appropriate engineering.

extent of misincorporation is observed, Figure 5, panel B, lanes
3 and 6, may be explained by invoking an A(sy@{anti) pair.
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